博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
马尔可夫模型
阅读量:5280 次
发布时间:2019-06-14

本文共 1007 字,大约阅读时间需要 3 分钟。

       安德雷·安德耶维齐·马尔可夫(A.A.Markov,1856-1922),彼得堡数学学派的代表任务,以数论和概率论方面的工作著称,其以马尔可夫假设而得名。

背景介绍

      19世纪初,概率论的发展从对(相对静态的)随机变量的研究发展到对随机变量的时间序列$s_1$,$s_2$,...$s_t$,...,即随机过程(动态)的研究。在数学上,这是工具的升级;在哲学上,这是人类认知的一个飞跃。随机过程比随机变量复杂得多。首先,在任何一个时刻$t$,其所对应的状态$s_i$是随机的。再者,任何一个状态$s_t$的取值都可能和周围其它的状态相关。

马尔可夫链

      在上述背景中,介绍了随机过程中状态序列分析的复杂性。在这里,假设存在一个时间序列$s_1$,$s_2$,...$s_t$,现在我们要计算该序列成的概率,即要求:

$P(s_1s_2$...$s_t)$的值。依据条件概率公式,可得:

$P(s_1s_2$...$s_t)=P(s_1)P(s_2|s_1)P(s_3|s_1s_2)$...$P(s_t|s_1s_2...s_{t-1})$

上面这个式子是没有什么问题的,但是对于它的计算就存在一些障碍。首先,$P(s_1)$、$P(s_2|s_1)$、$P(s_3|s_1s_2)$的计算是可以接受的。但随着$t$的增大,越到后面,计算量就越大。因此,对于这个公式只能进行估算。

      马尔可夫链就是这样一种工具,假设在随机过程中各个状态$s_t$的概率分布只与其前一个状态$s_{t-1}$,而与其它状态无关,即:

$P(s_t|s_1s_2...s_{t-1})$=$P(s_t|s_{t-1})$。

有了这么一个假设,之前的公式计算就变得可能了:

$P(s_1s_2$...$s_t)=P(s_1)P(s_2|s_1)P(s_3|s_2)$...$P(s_t|s_{t-1})$

 上述的假设仅仅是对时间序列的状态做的一种近似估计,当然并不是所有的应用都会符合这种假设。这个假设被命名为马尔可夫假设,凡是符合该假设的随机过程便称之为马尔可夫过程,也称为马尔可夫链。

 

参考文献

[1] 吴军. 数学之美[M]. 人民邮电出版社, 2014.

[2] 李航. 统计学习方法[M]. 清华大学出版社, 2012.

转载于:https://www.cnblogs.com/heaveneleven/p/9280153.html

你可能感兴趣的文章
瞬间的永恒
查看>>
2019-8-5 考试总结
查看>>
JS中实现字符串和数组的相互转化
查看>>
web service和ejb的区别
查看>>
Windows Azure Cloud Service (29) 在Windows Azure发送邮件(下)
查看>>
CS61A Efficiency 笔记
查看>>
微信上传素材返回 '{"errcode":41005,"errmsg":"media data missing"}',php5.6返回
查看>>
div或者p标签单行和多行超出显示省略号
查看>>
Elasticsearch 滚动重启 必读
查看>>
Hadoop基本概念
查看>>
java.util.zip压缩打包文件总结一:压缩文件及文件下面的文件夹
查看>>
浅说 apache setenvif_module模块
查看>>
MySQL--数据插入
查看>>
重新学习python系列(二)? WTF?
查看>>
shell脚本统计文件中单词的个数
查看>>
SPCE061A学习笔记
查看>>
sql 函数
查看>>
hdu 2807 The Shortest Path 矩阵
查看>>
熟悉项目需求,要知道产品增删修改了哪些内容,才会更快更准确的在该项目入手。...
查看>>
JavaScript 变量
查看>>